Competition between Different Nucleophilic Sites belonging to the Same Lewis Bases. Part 3.1 The Basicity of Arsenic and Phosphorus Sites relative to Borane

By Marcel Durand, Claude Jouany, and Gérard Jugie,* Laboratoire de Chimie de Coordination du CNRS, BP 4142, 31030 Toulouse Cedex, France

Lucien Elegant and Jean-François Gal, Laboratoire de Chimie Physique Organique, Université de Nice, Parc Valrose, 06034 Nice, France

After establishing some structural characteristics of a few simple AsR₃·BH₃ adducts (R = Me, Et, or Ph) by n.m.r. spectroscopy, the reaction of BH₃ with a ligand (L) containing both phosphorus and arsenic donor sites (Ph₂PCH₂-CH₂AsPh₂) has been studied. The superior basicity of phosphorus as compared to arsenic in these adducts is shown by displacement reactions and a calorimetric study. Enthalpic data (in kJ mol⁻¹) obtained for the gas-liquid reactions (i) and (ii) are $\Delta H_1 = -160.4$ and $\Delta H_2 = -153.4$ for M = P, and $\Delta H_1 = -76.1$ and $\Delta H_2 = -111.3$ лн

$$2MPh_3(sol) + B_2H_6(g) \xrightarrow{4H_4} 2MPh_3 \cdot BH_3(sol)$$
(i)

$$MPh_{3}(sol) + BH_{3}(g) \xrightarrow{2H_{3}} MPh_{3} \cdot BH_{3}(sol)$$
(ii)

for M = As. In the case of L, two stages of complexation may be separated and the corresponding enthalpies (kJ mol⁻¹) are $\Delta H_1 = -165.3$ (2L + B₂H₆) and $\Delta H_2 = -155.6$ (L + BH₃) corresponding to complexation of the phosphorus site, and $\Delta H_1 = -60.7$ (2L·BH₃ + B₂H₆) and $\Delta H_2 = -103.3$ (L·BH₃ + BH₃) corresponding to complexation of the arsenic site.

THE co-ordinating powers of simple boranes with respect to Group 5A donors containing nitrogen or phosphorus have been extensively investigated during the last two decades,² but relatively little is known about arsenicboron adducts.³⁻⁷ We therefore report the characterization of several AsR_3 ·BH₃ compounds (R = Me, Et, or Ph) using n.m.r. spectroscopy as the main analytical tool; moreover, following our previous investigation ¹ of the competition between two different donor sites within the same molecule, we have studied the behaviour of phosphorus and arsenic atoms when they occur in chemically similar environments, as in 1-diphenylarsino-2-di-Ph₂PCH₂CH₂AsPh₂ phenylphosphinoethane, (L). Then, with the aid of calorimetric results, the order of basicity of phosphorus and arsenic towards BH₃ is compared.

EXPERIMENTAL

Owing to the sensitivity of the ligands and adducts to air, the experiments were made in a dry inert atmosphere.

³ F. Hewitt and A. K. Holliday, J. Chem. Soc., 1953, 530.

Trimethylarsine and triethylarsine were prepared by the action of arsenic trichloride on Grignard reagents and were purified by standard procedures.^{8,9} Triphenylphosphine, triphenylarsine, and 1-diphenylarsino-2-diphenylphosphinoethane (L) were obtained commercially. Microanalytical data were within acceptable limits and the purity was checked by n.m.r. tests, which in this case can detect ca. 1%of impurity.

Preparation of Diborane.—(a) When a large excess was necessary, B_2H_6 was prepared by Schlesinger's method ¹⁰ using diethylether-boron trifluoride and sodium tetrahydroborate in glyme [bis(2-methoxyethyl) ether]. The resulting B_2H_6 was introduced into a benzene solution of the free ligand by means of a capillary or a tube having a small sinterèd-glass tip.

(b) When known amounts of BH_3 had to be mixed with the ligands, we used Reetz's method.¹¹ In a typical experiment, a mixture of equimolar amounts of Na[BH₄] and base in an excess of tetrahydrofuran (thf) was treated

⁴ F. G. A. Stone and A. B. Burg, J. Amer. Chem. Soc., 1954, 76, 386.

A. B. Burg and L. R. Grant, J. Amer. Chem. Soc., 1959, 81, 1.

R. Goetze and H. Nöth, Z. Naturforsch., 1975, B30, 343.

⁸ E. G. Claeys, J. Organometallic Chem., 1966, 5, 446.
 ⁹ W. J. C. Dyke and W. J. Jones, J. Chem. Soc., 1930, 2426; J. Seifter, J. Amer. Chem. Soc., 1939, 61, 530.
 ¹⁰ H. C. Brown and P. A. Tierney, J. Amer. Chem. Soc., 1958, 00 1576.

80, 1552.

¹¹ T. Reetz and B. Katlafsky, J. Amer. Chem. Soc., 1960, 82, 5036; T. Reetz, *ibid.*, p. 5039.

Part 2, F. Grasnier, C. Jouany, G. Jugie, J. F. Labarte, and J. M. Savariault, J. Chim. phys., 1976, 73, in the press; part 1, C. Jouany, J.-P. Larent, and G. Jugie, J.C.S. Dalton, 1974, 1510.
 ² See, for example, T. D. Covle and F. G. A. Stone, Progr.

² See, for example, T. D. Coyle and F. G. A. Stone, *Progr. Boron Chem.*, 1964, **1**, 83; G. W. Parshall, 'The Chemistry of Boron and its Compounds,' Wiley, New York, 1967, p. 615; K. Niedenzu and J. W. Dawson, *ibid.*, p. 377; H. Nöth, *Progr. Boron Chem.*, 1970, **3**, 212.

⁶ J. R. Durig, B. A. Hudgens, and J. M. Odom, Inorg. Chem., 1974, 13, 2306.

with carbon dioxide at room temperature, with vigorous stirring, until the exothermic reaction was complete and the absorption of CO_2 had ceased. The reaction product was filtered off and the filtrate was evaporated. Fractional crystallization of the residue yielded the adduct. The stoicheiometry of these adducts was determined from microanalytical data; calorimetric titrations confirmed the formation of 1:1 adducts between BH₃ and PR₃ or AsR₃ ligands.

change in gradient when 0.5 mol of B_2H_6 had been added to 1 mol of PPh₃ or AsPh₃. In the case of L the titration curves showed two changes in gradient at mol ratios of 1:2 and 1:1 between B_2H_6 and L. In the latter case the gradients gave $-\Delta H_1(P)$ and $-\Delta H_1(As)$ for the complexation of the phosphorus and arsenic site respectively (see Discussion and Figure). No correction for the heat of solution of B_2H_6 was made since the Lewis acid is almost insoluble in C_6H_6 , and therefore no significant heat effect appears when B_2H_6 is passed through the pure solvent.

Proton and ³¹P magnetic resonance measurements were

 TABLE 1

 Hydrogen-1, ³¹P, and ¹¹B n.m.r. data

	Chemical shift (p.p.m.) ^a				Coupling constant (Hz)			
Compound	$\widetilde{\delta(CH_3)}$	$\delta(CH_2)$	$\delta(C_6H_5)$	$\delta(\mathrm{B}H_3)$	δ(³¹ P)	δ(¹¹ B)	$\int {}^{1}J(\mathbf{BP})$	¹ <i>J</i> (BH)
AsMe ₃ •BH ₃	1.26			1.08		$\left\{egin{smallmatrix} -34.5\ {}^{b}\ -32.5\ {}^{b}\end{array} ight.$		${105 \\ 100 }$
AsEt₃ AsEt₃•BH₃ AsPh₃	1.1_1 1.1_8	$\frac{1.3_6}{1.6_6}$	7.3 ₂	1.1		-40.5		102
AsPh ₃ ·BH ₃			7.4 ₆	ca. 1.3 ₅		$ig\{ {-35\ e \ -34\ e \ }$		95
PPh3 PPh3•BH3 I			7.2_7 7.4_7	ca. 1.7	-118.5 92 127	- 37.5	60	95
Ĺ∙BH₃ L•2BH₃					-94.5 -94.5	39 39 d	60 60	95 95

• The following standards were used: ¹H, SiMe₄ (internal); ³¹P, P₄O₆ (external); and ¹¹B, OEt₂·BF₃ (external). High-field shifts are shown as negative values. ^b See ref. 6. ^c See ref. 7. ^d For this compound the resonances of the two different boron nuclei (P·B and As·B) were so close that the pattern was not resolved. Nevertheless, the As·B resonance appeared as a shoulder on the low-field area of the P·B resonance.

made on Perkin-Elmer R 10 and R 12 spectrometers operated at 60.00 and 24.29 MHz; ¹¹B and some ¹H n.m.r. spectra were recorded on a Brücker WH 90 spectrometer operating at 28.88 and 90.00 MHz. For the displacement reactions, a weighed amount of the adduct was dissolved in benzene and the equimolar amount of a base was added. The solution was then transferred to the n.m.r. tube and the spectrum recorded (at 33 °C in the Perkin-Elmer spectrometer, and at room temperature in the Brücker spectrometer).

Calorimetric titrations were made with a Calvet calorimeter^{12a} fitted with a vacuum line.^{12b} Diborane was prepared under low pressure by the reaction of $K[BH_4]$ with 85% phosphoric acid.¹³ The gas was purified by passage through traps at -76 °C (solid carbon dioxide-acetone), and at -111 °C (CS₂ slush) and condensed at -196 °C (liquid nitrogen). After completion of the reaction, the condensed B_2H_6 was evaporated, passed through another trap at -111 °C, and condensed in a calibrated glass bulb. The titrations were carried out by adding successive small quantities of B_2H_6 (ca. 10⁻⁴ mol precisely measured by pressure differences) to a 0.5 mol dm^{-3} solution (0.2 mol dm^{-3} in the case of L) of base (3 cm³, 1.5×10^{-3} or 0.6×10^{-3} mol). Quantities of heat were measured by electronic integration of the voltage delivered by the calorimeter sensor, which is proportional to the heat flow. The calorimeter and the integrator were calibrated by the Joule effect. A plot of the sum of all the measurements of the heat evolved against the number of moles of B_2H_6 added gave a line of gradient $-\Delta H_1$ with a sharp

RESULTS

Reaction of Free Bases with Diborane.-The direct introduction or in-situ generation of B2H6 in ligand solutions gave rise to adduct formation according to the general scheme: Base $+\frac{1}{2}B_{2}H_{6} \longrightarrow Base \cdot BH_{3}$. The bases AsMe₃, AsEt₃, and AsPh₃ consumed one equivalent of BH₃ as shown by the microanalytical data, the calorimetric titrations, and the n.m.r. data. In these three cases the reactions were quantitative and did not lead to any secondary products, as was verified by ¹¹B and ¹H n.m.r. On the other hand, the reaction of L (Ph₂PCH₂CH₂AsPh₂) with $B_{2}H_{6}$ occurred in two stages: first, the base combined with one equivalent of BH₃, producing a white crystalline compound which is readily soluble in benzene; secondly, the L·BH₃ adduct reacted with another equivalent of BH₃ to produce an adduct which is slighly soluble in benzene. Thus, the two adducts (L·BH₂ and L·2BH₃) may be isolated by fractional crystallization. This two-step addition provides chemical evidence that both sites (P,As) of L are active towards borane fragments.

N.M.R. Spectra.—In contrast to phosphine-borane adducts, very few complete investigations are described in the literature ^{6,7} for the arsine-borane analogues. Nevertheless the ¹¹B and ¹H n.m.r. spectra clearly demonstrate the structure of the molecules: in each case, the ¹¹B spectra consisted of a 1:3:3:1 quartet (poorly resolved for AsPh₃·BH₃), displaced upfield from the standard OEt₂·BF₃, in a position typical of a four-co-ordinate boron;¹⁴ the ¹H spectra gave at least two other pieces of evidence for the

¹² (a) H. D. Brown, 'Biochemical Microcalorimetry, 'Academic Press, New York, 1969, chs. 1 and 14; (b) L. Elegant, J. Cassan, and M. Azzaro, Bull. Soc. chim. France, 1968, 2675.

¹³ A. D. Norman, Inorg. Synth., 1968, **11**, 15.

¹⁴ W. Phillips, H. Miller, and E. Muetterties, J. Amer. Chem. Soc., 1959, **81**, 4496; H. Nöth and H. Vahrenkamp, Chem. Ber., 1966, **89**, 1049.

formation of the As·B bond since we simultaneously observed a quartet * of broad peaks attributable to the BH_3 resonances, a shift to low field of the CH_3 (in AsMe₃·BH₃) and C_6H_5 resonances, and a large increase in the internal shift, Δ_{int} , of the ethyl group (CH₃CH₂As) (0.48 p.p.m. for the AsEt₃·BH₃ adduct compared to 0.25 p.p.m. in the parent arsine).

Concerning the L adducts (L·BH₃ and L·2BH₃), the ¹¹B and ¹H spectra were complex because of the overlapping of the resonance patterns attributable to the phosphorus and arsenic environments. Fortunately the interpretation of the ³¹P spectra is more straightforward and clear indications are obtained from them; in fact, when the first BH₃ group was added (L·BH₃) a large shift was observed relative to the free-ligand (L) resonance, but further addition of BH3 (leading to L·2BH₃) gave no appreciable change in the ³¹P resonance pattern. In view of the sensitivity of the $\delta(^{31}P)$ parameter to the co-ordination environment in this kind of compound, this affords strong evidence for the initial attack of BH_3 on the phosphorus atom of the L molecule.

Calorimetric Results .- The calorimetric determinations give values for the enthalpies of reaction (1). Knowing the

$$2MR_{3}(sol) + B_{2}H_{6} (g) \xrightarrow[2H_{1}]{C_{6}H_{6}} 2MR_{3} \cdot BH_{3}(sol) (1)$$

value for the enthalpy of dissociation of diborane,¹⁶ we obtain ΔH_2 corresponding to reaction (2). The ΔH_1 and

$$MR_{3}(sol) + BH_{3}(g) \xrightarrow{2H_{2}} MR_{3} \cdot BH_{3}(sol)$$
 (2)

 ΔH_2 values are given in Table 2, from which it can be seen that there is a marked difference of $ca. 40 \text{ kJ} \text{ mol}^{-1}$ between the two phenyl analogues of phosphorus and arsenic; this difference is significant and shows that the donor-acceptor bond strength is very much stronger in PPh₃·BH₃ than in AsPh₃·BH₃. These results are still more striking when we look at a plot of the calorimetric titration of the two-donorsite base (L) with BH₃: this clearly shows two different gradients with a sharp inflexion corresponding exactly to one equivalent of BH_3 added to L. The two gradients of the plot (see Figure) give two different heats of complexation (ΔH_2) which correspond almost exactly with the individual phosphine-borane and arsine-borane values.

DISCUSSION

Although the general trend of co-ordination P > Astowards BH_a has already been established by various methods,¹⁷ we wanted to test this sequence in such a way that there would be no ambiguity arising from experimental factors. The chemical and n.m.r. data cited above confirm the structure given for AsR₃·BH₃, L·BH₃, and L·2BH₃; moreover, the analysis of the ³¹P n.m.r. spectra demonstrates the difference in basicity between the phosphorus and the arsenic atoms with reference to

the Lewis acid BH₃. The calorimetric determinations confirm the validity of the sequence P > As. We note that the basicity of the arsenic site in L is not greatly affected by the complexation of phosphorus with BH₃ since the observed ΔH_2 value (-103.3 kJ mol⁻¹) appears to be very close to that obtained for AsPh₃ (cf. Table 2). We emphasize this feature, which indicates that in L we are not confronted with steric-hindrance effects as we

TABLE 2 Enthalpies (kJ mol⁻¹) of reaction of the Lewis bases and diborane

Compound	$-\Delta H_1^{a}$	$-\Delta H_2$
PPh, b	160.4 ± 2.5	153.4
AsPh ₃	$76.1 \stackrel{-}{\pm} 3.3$	111.3
Ph2PCH2CH2AsPh2 (L)	165.3 ± 3.8	155.6
()	60.7 + 4.2	103.3

" The quoted errors are the 95% confidence levels. " These results are in good agreement with the values of 37.5 kcal mol⁻¹, *i.e.* 156.9 \pm 1.3 kJ mol⁻¹, obtained by T. McAllister and H. Mackle, *Trans. Faraday Soc.*, 1969, **65**, 1734.

Plot of the heat evolved against quantity of B_2H_6 added to 0.2 mol dm⁻³ solution of L (3 cm³, 6 × 10⁻⁴ mol): (\bigcirc), complexation of the phosphorus site; (\blacksquare), complexation of the arsenic site; (\mathbf{v}) , no further reaction

were during the study of the BH₃ adducts of P(CH₂-NEt₂)₃;¹ we recently obtained ¹⁸ calorimetric data which thoroughly confirm the previous n.m.r. results.¹ In fact, the calorimetric-titration curve of P(CH₂NEt₂)₃ does not show any inflexion before three BH₃ groups are co-ordinated with the free ligand; moreover, the ΔH_2 value (-161.7 kJ mol-1), which corresponds to the bonding of borane to the nitrogen's lone pair of electrons (cf. ΔH_2 ca. 168 kJ mol⁻¹ in NEt₃·BH₃), is in perfect agreement with the conclusion of the n.m.r. study which shows that in the particular case of $P(CH_2NEt_2)_3$ the formation of the P·B bond is extremely unfavourable when compared to that of the N·B bond.

As a final test of the conclusion given above for ¹⁶ T. P. Fehlner and G. W. Mappes, *J. Phys. Chem.*, 1969, **73**, 873; G. W. Mappes, S. A. Fridmann, and T. P. Fehlner, *ibid.*, 1970, 74, 3307.

^{*} In fact, the observed splitting does not rigorously consist of four 1:1:1:1 equidistant peaks owing to the well known 'thermal-decoupling' effect.¹⁵ However, since the BH_3 quartet only slightly collapsed at the recording temperature (33 °C), a first-order analysis was possible and ${}^{1}f(BH)$ was measured as the separation of the central peaks.

¹⁵ See, for example, J. Bacon, R. J. Gillespie, and J. W. Quail, *Canad. J. Chem.*, 1963, 41, 3063; R. V. Ammon, B. Kanellako-pulos, G. Schmid, and R. D. Fischer, *J. Organometallic Chem.*, 1970, 25, C1; D. W. Lowman, P. D. Ellis, and J. D. Odom, *J. Magnetic Resonance*, 1972, 8, 289.

 ¹⁷ D. C. Mente, J. L. Mills, and R. E. Mitchell, *Inorg. Chem.*,
 1975, 14, 123; D. C. Mente and J. L. Mills, *ibid.*, p. 1862.
 ¹⁸ L. Elegant, J. F. Gal, C. Jouany, and G. Jugie, unpublished

work

PPh₃, AsPh₃, and L, some homogeneous displacement reactions were studied which involved equimolar amounts of an adduct Base-1·BH₃ and another ligand Base-2. Using ³¹P n.m.r. spectra, we took advantage of the well known large shift in the phosphorus signal towards low fields (50-70 p.p.m.) when PR₃ is complexed by boron Lewis acids ¹⁹ in order to determine the position of the equilibria (3) and (4). In both cases equilibrium was

$$PPh_{3} + AsPh_{3} \cdot BH_{3} \rightleftharpoons (3)$$

$$Ph \qquad Ph$$

$$I \qquad I$$

$$PPh_{3} + H_{3}B \cdot PCH_{2}CH_{2}As \cdot BH_{3} \rightleftharpoons (4)$$

$$I \qquad I$$

$$Ph \qquad Ph$$

reached rapidly and in (3) we observed the complete disappearance of the signal attributable to the free

phosphine; this was replaced by the PPh₃·BH₃ pattern, which is displaced 26 p.p.m. downfield from PPh₃. In (4) a very similar behaviour was found, that is the free PPh₃ signal vanished, and an unchanged pattern for the signal attributable to $Ph_2P(\cdot BH_3)CH_2CH_2AsPh_2$ was observed. It is of interest to note that, in the system PPh₃·BH₃ + AsPh₃, borane is not displaced by the arsine from the triphenylphosphine adduct. The results of these investigations of the equilibria provide new evidence that the As·B bond is less favoured than the P·B bond in systems such as alkyl derivatives of phosphorus and arsenic not involving steric hindrance.

[6/244 Received, 5th February, 1976]

¹⁹ J. F. Nixon and A. Pidcock, Ann. Rev. N.M.R. Spectroscopy, 1969, 2, 346.